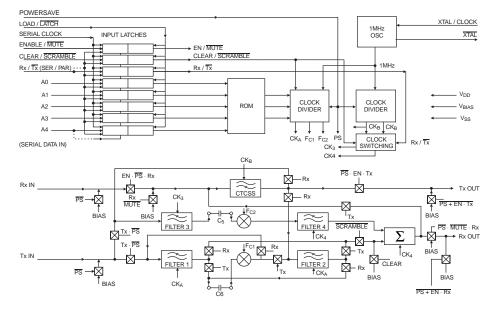



# MX·CDM, INC. MiXed Signal ICs

MX214/224

DATA BULLETIN


Variable Split Band Inverter

# Features

- CTCSS Highpass Filter
- Good Recovered Audio Quality
- Fixed and Rolling Code Modes
- Serial (MX214) and Parallel (MX224) Loading Options
- 32 Programmable Split Points
- Half-Duplex Capability

# Applications

- Mobile Radio Voice Security
- Cellular Telephone Voice Security



The MX214/224 Variable Split Band Inverters are designed for mobile and cellular radio voice security applications. Digital control functions are loaded serially into the MX214. The MX224 is loaded in parallel.

The MX214/224 ICs include a highpass filter that rejects subaudio frequencies, ensuring full CTCSS compatibility. This CTCSS filter is not included on the earlier generation MX204 VSB Inverter.

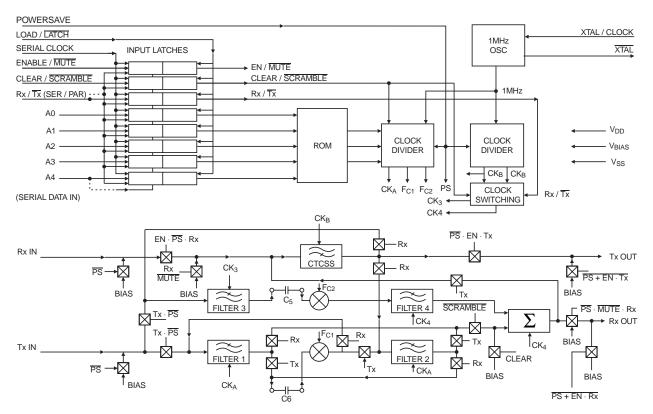
The MX214/224 splits the voiceband (300-2700Hz) into upper and lower subbands, and inverts each subband about itself. The 'split point' (defined as the frequency where the voice band is subdivided), is externally programmable to 32 distinct values in the 300 to 3000Hz range. In the 'fixed code' mode, a single point is used. Fixed mode operation nets approximately 4 mutually exclusive secure channels.

In 'rolling code' mode, the split point is changed many times per second, usually under control of a microprocessor. Rolling code scrambling requires synchronization, offers higher security than fixed code operation, and provides a much greater number of mutually exclusive secure channels.

The MX214/224 offers a recovered audio product close to that of a telephone. The on-chip 'Mute' function is useful when implementing rolling code continuous synchronization schemes. 'Powersave' and 'Clear/Scramble' controls are also included on-chip. Timing and filter clocks are derived internally from an on-chip 1MHz reference oscillator driven by a 1MHz crystal or clock pulse input.

The MX214 and the MX224 operate from a single 5.0V supply and available in the following packges: 22-pin CDIP (MX214J/MX224J), 22-pin PDIP (MX214P/MX224P), and 24-pin PLCC (MX214LH/MX224LH).

Section


Page

# Contents

# 3. External Components......7 5. Application ......9 6. Performance Specifications......11 6.1.1 6.1.2 6.1.3 6.1.4 Timing ......14

MX-COM, Inc. reserves the right to change specifications at any time without notice.

# 1. Block Diagram





# 2. Signal List

|     | 214<br>No. |                                                | 224<br>No.                                     | Signal Name           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----|------------|------------------------------------------------|------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J/P | LH         | J/P                                            | LH                                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7   | 1          | 1                                              | 1                                              | Xtal/Clock            | Input to the clock oscillator inverter. A 1MHz crystal input or externally derived 1MHz clock is injected here.                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8   | 2          | 2                                              | 2                                              | Xtal                  | Output of the clock oscillator inverter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9   | 3          |                                                |                                                | Serial Data Input     | This pin is used to input an 8-bit word representing<br>the digital control functions. This word is loaded<br>using the serial data clock and in input in the<br>following sequence: MUTE, CLEAR, $Rx/Tx$ , A0,<br>A1, A2, A3, A4. The Load/Latch is operated on the<br>completion. Reference the timing diagram in Figure<br>8.                                                                                                                                                                                                            |
|     |            | 3 - A4<br>4 - A3<br>5 - A2<br>6 - A1<br>7 - A0 | 3 - A4<br>4 - A3<br>5 - A2<br>6 - A1<br>7 - A0 | Programming<br>Inputs | In parallel mode, these five digital inputs define the split point frequency. Each of the 5 input pins has a $1M\Omega$ internal pull-up resistor. See Table 4 for programming information.                                                                                                                                                                                                                                                                                                                                                 |
|     |            | 8                                              | 8                                              | Rx/Tx                 | This digital input selects the Receive and Transmit paths and configures upperband and lowerband filter bandwidths while setting the CTCSS highpass filter position on the signal path. See Table 2, Figure 6, and Figure 7. $1M\Omega$ internal pull-up resistor (Rx).                                                                                                                                                                                                                                                                     |
| 13  | 8          |                                                |                                                | Parallel/Serial       | This pin must be connected to $V_{SS}$ for serial loading.<br>Internal 1M $\Omega$ pull-up resistor.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |            | 9                                              | 9                                              | Clear/Scramble        | This digital input puts the device into 'Clear' or<br>'Scramble' mode by controlling the application of<br>carrier frequency to the Upper and Lower band<br>balanced modulators. In 'Scramble' mode, the<br>balanced modulator carrier frequency values are<br>selected by the split point address A0-A4. See<br>Table 4. In 'Clear' mode, the carriers are disabled<br>and the balanced modulators are bypassed<br>internally, i.e. the lower band signal is not added to<br>the output signal. 1MHz internal pull-up resistor<br>(Clear). |
|     |            | 10                                             | 10                                             | Enable/Mute           | This digital function is used to disable the Receive or the Transmit signal paths for rolling code synchronization while maintaining bias conditions. Synchronization data can be transmitted during the Mute periods, as is done in the MX1204 VSB Scrambler Module. $1M\Omega$ Internal pull-up resistor (Enable)                                                                                                                                                                                                                         |
| 14  | 10         |                                                |                                                | Serial Clock<br>Input | This is the externally applied data clock frequency used to shift input data along in devices wired in the Serial-loading mode. One full data clock cycle is required to shift one data bit completely into the register. See Timing Diagram Figure 8. $1M\Omega$ Internal pull-up resistor.                                                                                                                                                                                                                                                |

|     | 214<br>No. |     | (224<br>n No. | Signal Name               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|------------|-----|---------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J/P | LH         | J/P | LH            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15  | 11         | 11  | 11            | Load/Latch                | This pin controls the loading of the 8 digital function<br>inputs (ENABLE, CLEAR, A0-A4) into the internal<br>register. When this pin is at a logic '1', all eight<br>inputs are transparent and new data acts directly.<br>For controlled changing of parameters in the<br>parallel, Load/Latch must be kept at logic '0' while<br>a new function is loaded, then strobed 0-1-0 to latch<br>the inputs in. For serial loading, the serial data<br>should be loaded with the Load/Latch at logic '0'<br>and then the Load/Latch strobed 0-1-0 on<br>completion of data loading. Internal 1M $\Omega$ pull-up<br>resistor (Load). See Figure 8. |
| 16  | 12         | 12  | 12            | Powersave                 | This digital input is used to place the MX214/224<br>into Powersave mode where all parts of the device<br>except the 1MHz oscillator are shut down. All signal<br>input and output lines are made open circuit, free of<br>all bias. This allows signal paths to be routed<br>externally around the device, while reducing current<br>consumption. A logic '0' at this input enables the<br>device to work normally as shown in Table 2.<br>Internal 1M $\Omega$ pull-up resistor.                                                                                                                                                             |
| 17  | 13         | 13  | 13            | V <sub>SS</sub>           | Negative supply (GND)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 18  | 14         | 14  | 14            | Internal connection       | This pin is internally connected. Leave open circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 19  | 15         | 15  | 15            | Rx Output                 | This is the processed received audio signal output.<br>This pin is held at a DC 'bias' voltage for all<br>functions except Powersave. This buffered output is<br>driven by the summing circuit in the Rx mode.<br>Signal paths and bias levels are detailed in Table 2<br>and Figure 7.                                                                                                                                                                                                                                                                                                                                                        |
| 20  | 16         | 16  | 16            | Tx Output                 | This is the processed audio output for the<br>transmission channel. This pin is held at a DC 'bias'<br>voltage for all functions except Powersave. This<br>summed and buffered signal is passed through the<br>CTCSS high pass Filter to the output pin in the Tx<br>Mode. Signal paths and bias levels are detailed in<br>Table 2 and Figure 6.                                                                                                                                                                                                                                                                                               |
| 21  | 17         | 17  | 17            | V <sub>BIAS</sub>         | Normally at $V_{DD}/2$ , this pin requires an external decoupling capacitor (C7) to $V_{SS}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 22  | 18         | 18  | 18            | Rx Input                  | This is the analog received signal input. This pin is<br>held at a DC 'bias' voltage by a $300k\Omega$ on-chip bias<br>resistor, which is selected for all functions except<br>Powersave. It must be connected to external<br>circuitry by capacitor C3. See Figure 2 and Figure<br>3. This input is routed through the CTCSS High<br>Pass Filter in Rx mode to remove subaudio<br>frequencies from the voiceband. Signal paths and<br>bias levels are detailed in Table 2 and Figure 7.                                                                                                                                                       |
| 1   | 19         | 19  | 19            | Highband Filter<br>Output | The output of the Input Filter of the Upperband limit.<br>The $Rx/Tx$ functions sets the lowpass filter at<br>3400Hz or 2700Hz respectively. This output must<br>be connected to the Highband Balanced modulator<br>input via capacitor C5. See Figure 2 and Figure 3.                                                                                                                                                                                                                                                                                                                                                                         |

|                  | 214<br>No. | MX224<br>Pin No. |                  | Signal Name                          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------|------------|------------------|------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J/P              | LH         | J/P              | LH               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2                | 20         | 20               | 20               | Highband Balanced<br>Modulator Input | The input to the Balanced Modulator of the<br>Upperband limit. This input must be connected to<br>the Highband Filter Output via capacitor C5. See<br>Figure 2 and Figure 3.                                                                                                                                                                                                                                                                               |
| 3                | 21         | 21               | 21               | Lowband Balanced<br>Modulator Input  | The input to the Balanced Modulator of the<br>Lowerband limit. This input must be connected to<br>the Lowband Filter Output via capacitor C6. See<br>Figure 2 and Figure 3.                                                                                                                                                                                                                                                                                |
| 4                | 22         | 22               | 22               | Tx input                             | This analog 'Clear' audio input for the VSB<br>Scrambler. This pin is held at a DC 'bias' voltage by<br>a $300k\Omega$ on-chip bias resistor, which is selected for<br>all functions except powersave. In must be<br>connected to external circuitry by capacitor C4. See<br>Figure 2 and Figure 3. This input, in Tx mode, is<br>connected to Upper and Lowerband input filters.<br>Signal paths and bias levels are detailed in Table 2<br>and Figure 6. |
| 5                | 23         | 23               | 23               | Lowband Filter<br>Output             | The output of the Input filter of the lowerband limit.<br>The $Rx/Tx$ function determines which filter is used<br>(Filter 1 or 2). See Figure 6 and Figure 7. This<br>output must be connected to the Lowband balanced<br>modulator input via capacitor C6. See Figure 7.                                                                                                                                                                                  |
| 6                | 24         | 24               | 24               | V <sub>DD</sub>                      | A single 5.0V supply is required.                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10,<br>11,<br>12 |            |                  | 4, 5, 6,<br>7, 9 | N/C                                  | No Connection                                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### Table 1: Signal List

|              | $Rx/\overline{Tx} = 1$ | $Rx/\overline{Tx} = 0$ | MUTE = 0 | POWERSAVE      |
|--------------|------------------------|------------------------|----------|----------------|
| Rx Path      | Enabled                | Disabled               | Disabled | Disabled       |
| Rx Out Level | Bias                   | Bias                   | Bias     | High Impedance |
| Tx Path      | Disabled               | Enabled                | Disabled | Disabled       |
| Tx Out Level | Bias                   | Bias                   | Bias     | High impedance |

Table 2: Functions Influencing Signal Paths

# 3. External Components

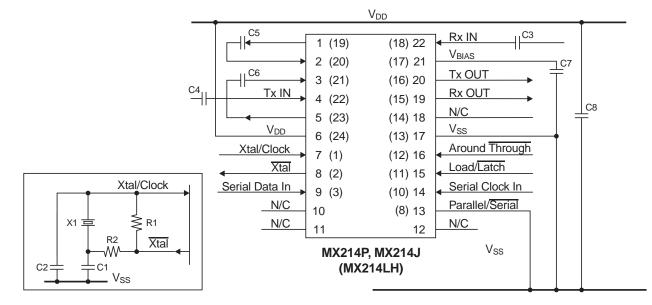



Figure 2: Recommended External Components 'MX214 Serial Loading'

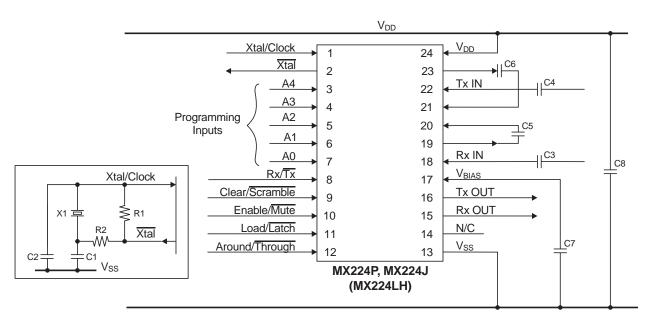



Figure 3: Recommended External Components 'MX224 Parallel Loading'

| Component | Notes | Value      | Tolerance |
|-----------|-------|------------|-----------|
| R1        |       | 1.0MΩ      | ±10%      |
| R2        |       | Selectable |           |
| C1        |       | 33pF       | ±20%      |
| C2        |       | 68pF       | ±20%      |
| C3        |       | 15nF       | ±20%      |
| C4        |       | 15nF       | ±20%      |
| C5        | 1     | 1.0µF      | ±20%      |
| C6        | 1     | 1.0µF      | ±20%      |
| C7        |       | 1.0µF      | ±20%      |
| C8        |       | 1.0µF      | ±20%      |
| X1        | 2     | 1MHz       |           |

8

#### Table 3: Recommended External Components

#### Notes:

- 1. C5 and C6 are coupling capacitors between filter outputs and balanced modulator inputs.
- For best results, a crystal oscillator design should drive the clock inverter input with signal levels of at least 40% of V<sub>DD</sub>, peak to peak. Tuning fork crystals generally cannot meet this requirement. To obtain crystal oscillator design assistance, consult your crystal manufacturer.

## 4. General Description

The MX214/224 Variable Split Band Inverters are designed for mobile and cellular radio voice security applications. Digital control functions are loaded serially into the MX214. The MX224 is loaded in parallel.

The MX214/224 ICs include a highpass filter that rejects subaudio frequencies, ensuring full CTCSS compatibility. This CTCSS filter is not included on the earlier generation MX204 VSB Inverter.

The MX214/224 splits the voiceband (300-2700Hz) into upper and lower subbands, and inverts each subband about itself. The 'split point' (defined as the frequency where the voice band is subdivided), is externally programmable to 32 distinct values in the 300 to 3000Hz range. In the 'fixed code' mode, a single point is used. Fixed mode operation nets approximately 4 mutually exclusive secure channels.

In 'rolling code' mode, the split point is changed many times per second, usually under control of a microprocessor. Rolling code scrambling requires synchronization, offers higher security than fixed code operation, and provides a much greater number of mutually exclusive secure channels.

The MX214/224 offers a recovered audio product close to that of a telephone. The on-chip ' Mute' function is useful when implementing rolling code continuous synchronization schemes. 'Powersave' and 'Clear/Scramble' controls are also included on-chip. Timing and filter clocks are derived internally from an on-chip 1MHz reference oscillator driven by a 1MHz crystal or clock pulse input.

# 5. Application

The MX214 represents both the MX214 and the MX224 throughout this section.

Recommended external components are shown in Figure 2 and Figure 3. In 'Scramble' mode, split point frequencies are selected and set in accordance with the ROM address code present at the inputs A0-A4. See Table 4. In 'Clear' mode, both upper and Lowerband filter limits are used (see Figure 6 and Figure 7), the carrier frequencies are turned off, and the balanced modulators are bypassed internally. The Lowband audio is removed from the output signal prior to summing.

| ROM<br>Address<br>A4-A0 | Split Point<br>Hz | Low Band<br>Carrier, Hz<br><sup>f</sup> C1 | High Band<br>Carrier, Hz<br>fC2 | ROM<br>Address<br>A4-A0 | Split Point<br>Hz | Low Band<br>Carrier, Hz<br><sup>f</sup> C1 | High Band<br>Carrier, Hz<br><sup>f</sup> C2 |
|-------------------------|-------------------|--------------------------------------------|---------------------------------|-------------------------|-------------------|--------------------------------------------|---------------------------------------------|
| 00000                   | 2800              | 3105                                       | 6172                            | 10000                   | 1135              | 1436                                       | 4504                                        |
| 00001                   | 2625              | 2923                                       | 6024                            | 10001                   | 1050              | 1351                                       | 4424                                        |
| 00010                   | 2470              | 2777                                       | 5813                            | 10010                   | 976               | 1278                                       | 4347                                        |
| 00011                   | 2333              | 2631                                       | 5681                            | 10011                   | 913               | 1213                                       | 4310                                        |
| 00100                   | 2210              | 2512                                       | 5555                            | 10100                   | 857               | 1157                                       | 4273                                        |
| 00101                   | 2100              | 2403                                       | 5494                            | 10101                   | 792               | 1094                                       | 4166                                        |
| 00110                   | 2000              | 2304                                       | 5376                            | 10110                   | 736               | 1037                                       | 4132                                        |
| 00111                   | 1909              | 2212                                       | 5263                            | 10111                   | 688               | 988                                        | 4065                                        |
| 01000                   | 1826              | 2127                                       | 5208                            | 11000                   | 636               | 936                                        | 4032                                        |
| 01001                   | 1750              | 2049                                       | 5102                            | 11001                   | 591               | 891                                        | 3968                                        |
| 01010                   | 1680              | 1984                                       | 5050                            | 11010                   | 552               | 853                                        | 3937                                        |
| 01011                   | 1555              | 1858                                       | 4950                            | 11011                   | 512               | 813                                        | 3906                                        |
| 01100                   | 1448              | 1748                                       | 4807                            | 11100                   | 471               | 772                                        | 3846                                        |
| 01101                   | 1354              | 1655                                       | 4716                            | 11101                   | 428               | 728                                        | 3816                                        |
| 01110                   | 1272              | 1572                                       | 4629                            | 11110                   | 388               | 688                                        | 3787                                        |
| 01111                   | 1200              | 1501                                       | 4587                            | 11111                   | 350               | 650                                        | 3731                                        |

#### Table 4: ROM Address Programming

The MUTE function disables the MX214/224's audio outputs to allow periodic transmission of synchronization data. A logic '0' at this input isolates the device while leaving the audio input and output ins at bias level (See Table 2). When the MX21/224 is in Powersave mode, audio signals may be hardwired around the device since the input and output pins are open circuit. See Table 2.

#### 5.1 Audio Quality

Figure 4 shows the recommended basic audio system layout using pre- and de-emphasis circuitry to maintain good recovered speech quality. The Transmit mode, *Do Not* pre-emphasize the audio output of the MX214. In the Receive mode, de-emphasis should be used after the MX214.

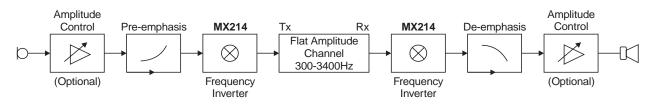





Figure 5 shows the recommended basic audio system layout if it is necessary to install the MX214 within a radio having pre- and de-emphasis circuitry as a standard. This is where post-emphasis access is not possible in the transmitter.

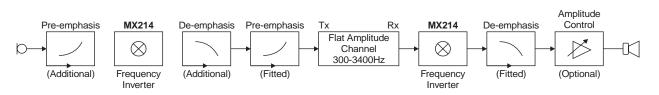



Figure 5: Recommended Basic Radio Communication Audio System Layout.

During the Transmit function the low pass and CTCSS filters are configured automatically as shown in Figure 6, with cut-off frequencies (-3dB) indicated.

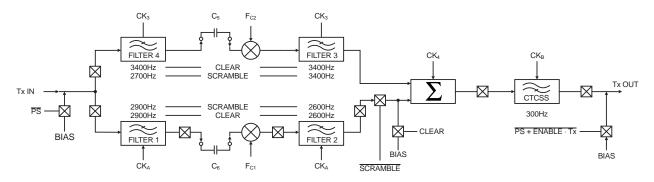



Figure 6: Basic Tx Path

During the Receive function the Low Pass and CTCSS filters are configured automatically as shown in Figure 7, with cut-off frequencies (-3dB) indicated.

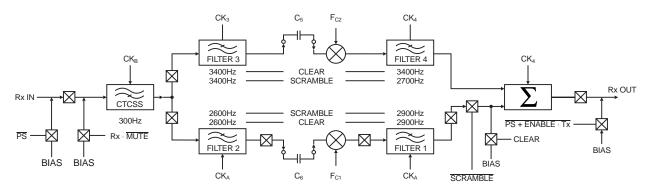



Figure 7: Basic Rx Path

# 6. Performance Specifications

#### 6.1 Electrical Specifications

#### 6.1.1 Absolute Maximum Limits

Exceeding these maximum ratings can result in damage to the device.

| General                                                         | Notes | Min. | Тур. | Max.                  | Units            |
|-----------------------------------------------------------------|-------|------|------|-----------------------|------------------|
| Supply (V <sub>DD</sub> -V <sub>SS</sub> )                      |       | -0.3 |      | 7.0                   | V                |
| Voltage on any pin to $V_{SS}$                                  |       | -0.3 |      | V <sub>DD</sub> + 0.3 | V                |
| Current                                                         |       |      |      |                       |                  |
| V <sub>DD</sub>                                                 |       | -30  |      | 30                    | mA               |
| V <sub>SS</sub>                                                 |       | -30  |      | 30                    | mA               |
| Any other pin                                                   |       | -20  |      | 20                    | mA               |
| P/LH Packages                                                   |       |      |      |                       |                  |
| Total allowable Power dissipation<br>at T <sub>AMB</sub> = 25°C |       |      |      | 800                   | mW               |
| Derating above 25°C                                             |       |      | 10   |                       | mW/°C above 25°C |
| Operating Temperature                                           |       | -30  |      | 70                    | °C               |
| Storage Temperature                                             |       | -40  |      | 85                    | °C               |
| J Package                                                       |       |      |      |                       |                  |
| Total allowable Power dissipation<br>at T <sub>AMB</sub> = 25°C |       |      |      | 800                   | mW               |
| Derating above 25°C                                             |       |      | 10   |                       | mW/°C above 25°C |
| Operating Temperature                                           |       | -30  |      | 85                    | ۵°               |
| Storage Temperature                                             |       | -55  |      | 125                   | °C               |

#### 6.1.2 Operating Limits

Correct Operation of the device outside these limits is not implied.

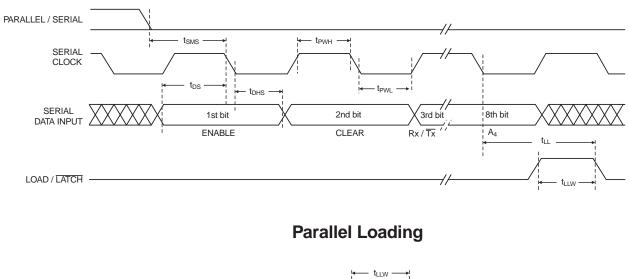
|                                            | Min. | Тур. | Max. | Units |
|--------------------------------------------|------|------|------|-------|
| Supply (V <sub>DD</sub> -V <sub>SS</sub> ) | 4.5  | 5.0  | 5.5  | V     |
| Operating Temperature (P/LH)               | -30  |      | 70   | °C    |
| Operating Temperature (J)                  | -30  |      | 85   | ٥C    |
| Xtal Frequency                             |      | 1.0  |      | MHz   |

For the following conditions unless otherwise specified.

 $V_{DD} = 5.0V @ T_{AMB} = 25^{\circ}C$ Audio Level 0dB ref. = 775m $V_{RMS}$ , Xtal/Clock Frequency = 1.0MHz

|                                    | Notes   | Min. | Тур. | Max. | Units |
|------------------------------------|---------|------|------|------|-------|
| Static Values                      |         |      |      |      |       |
| Voltage                            |         | 4.5  | 5.0  | 5.5  | V     |
| Current                            |         |      |      |      |       |
| Enabled                            |         |      | 8    |      | mA    |
| Powersave                          |         |      | 1.2  |      | mA    |
| Analog Input Impedances            |         |      |      |      |       |
| Tx/Rx Input (Enabled)              |         |      | 100  |      | kΩ    |
| Tx/Rx Input (Powersave)            |         | 1    |      |      | MΩ    |
| Balanced Modulator                 |         |      | 40   |      | kΩ    |
| Analog Output Impedances           |         |      |      |      |       |
| Rx Output (Tx Mode)                |         |      | 100  |      | kΩ    |
| Rx Output (Rx Mode)                |         |      |      | 2    | kΩ    |
| Rx Output (Powersave)              |         | 1    |      |      | MΩ    |
| Tx Output (Tx Mode)                |         |      |      | 2    | kΩ    |
| Tx Output (Rx Mode)                |         |      | 100  |      | kΩ    |
| Tx Output (Powersave)              |         | 1    |      |      | MΩ    |
| Input LPF                          |         |      |      | 1    | kΩ    |
| Digital Values                     |         |      |      |      |       |
| Digital Input Impedance            |         | 100  |      |      | kΩ    |
| Dynamic Values                     |         |      |      |      |       |
| Input Logic '1'                    |         | 3.5  |      |      | V     |
| Input logic '0'                    |         |      |      | 1.5  | V     |
| Xtal/Clock Frequency               |         |      | 1    |      | MHz   |
| Analog Input Level                 |         | -18  |      | 6    | dB    |
| Carrier Breakthrough               | 1       |      | -55  |      | dB    |
| Baseband Breakthrough              | 1, 2, 3 |      | -33  |      | dB    |
| Filter Clock Breakthrough          | 1, 2, 3 |      | -50  |      | dB    |
| Output Noise                       | 1, 4    |      | -45  |      | dB    |
| Passband Characteristics           |         |      |      |      |       |
| Clear Mode                         | 7       |      |      |      |       |
| Passband Gain                      |         |      | 0    |      | dB    |
| Output Lower 3dB Point (Rx or Tx)  |         |      | 300  |      | Hz    |
| Output Upper 3dB Point (Rx or Tx)  |         |      | 3400 |      | Hz    |
| Scramble-Descramble                | 5       |      |      |      |       |
| Received Signal Passband Gain      | 6       |      | 0    |      | dB    |
| Received Signal Lower 3dB Point    |         |      | 400  |      | Hz    |
| Received Signal Upper 3dB Point    |         |      | 2700 |      | Hz    |
| Transmitted Signal Lower 3dB Point |         |      | 300  |      | Hz    |
| Transmitted Signal Upper 3dB Point |         |      | 3400 |      | Hz    |

|                                   | Notes | Min. | Тур. | Max. | Units |
|-----------------------------------|-------|------|------|------|-------|
| CTCSS (Highpass Filter)           |       |      |      |      |       |
| -3dB Point                        |       |      | 300  |      | Hz    |
| Passband gain                     |       |      | 0    |      | dB    |
| Stopband Attenuation at f < 250Hz |       |      | 40   |      | dB    |


#### **Operating Characteristics Notes:**

- 1. Measured at the output of a single device.
- 2. Tx Mode.
- 3. Rx Mode.
- 4. With input AC short-circuited to V<sub>SS</sub>.
- 5. Measured at the output of a receiving device in a scrambler-descrambler system with a transmission channel having a flat amplitude response and a bandwidth of 300Hz to 3400Hz and measured relative to the input signal at the transmitting device.
- 6. Excluding split point  $\pm 150$ Hz.
- 7. Measured at the Rx or Tx output pin of a single source.

#### 6.1.4 Timing

| Timing           |                                 | Notes | Min. | Тур. | Max. | Units |
|------------------|---------------------------------|-------|------|------|------|-------|
| Serial Mode      |                                 |       |      |      |      |       |
| t <sub>SMS</sub> | Serial Mode Enable Set-Up       |       | 250  |      |      | ns    |
| t <sub>PWH</sub> | Serial Clock 'High' Pulse Width |       | 250  |      |      | ns    |
| t <sub>PWL</sub> | Serial Clock 'Low' Pulse Width  |       | 250  |      |      | ns    |
| t <sub>DS</sub>  | Data Set Up Time                |       | 150  |      |      | ns    |
| t <sub>DHS</sub> | Data Hold Time                  |       | 50   |      |      | ns    |
| t <sub>LL</sub>  | Load/Latch Set Up Time          |       | 250  |      |      | ns    |
| t <sub>LLW</sub> | Load/Latch Pulse Width          |       | 150  |      |      | ns    |
| Parallel Mode    |                                 |       |      |      |      |       |
| t <sub>LLW</sub> | Load/Latch Pulse Width          |       | 150  |      |      | ns    |
| t <sub>DSP</sub> | Data Set Up Time                |       | 150  |      |      | ns    |
| t <sub>DHP</sub> | Data Hold Time                  |       | 20   |      |      | ns    |

| Table 5: | Serial and Parallel Timing |
|----------|----------------------------|
|          | eena ana a alane ining     |



### **Serial Loading**



NOTE: For 'Serial Load' devices the data loading sequence is: - Enable - Clear - Rx/Tx - A0 - A1 - A2 - A3 - A4

#### Figure 8: Loading Timing Diagram

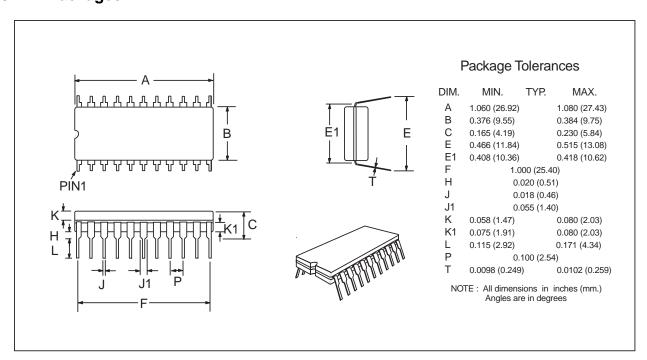



Figure 9: 22-pin CDIP Mechanical Outline: Order as part no. MX214J or MX224J

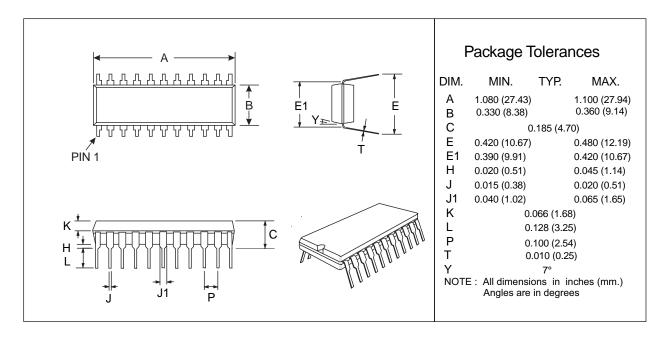



Figure 10: 22-pin PDIP Mechanical Outline: Order as part no. MX214P or MX224P

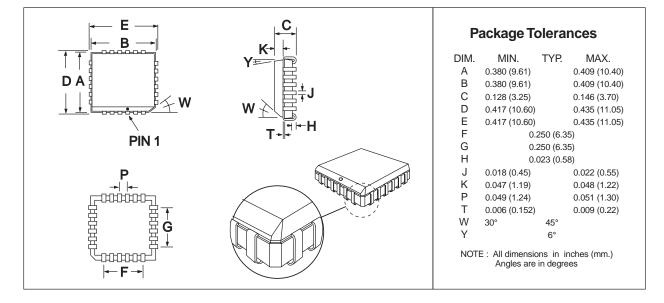



Figure 11: 24-pin PLCC Mechanical Outline: Order as part no. MX214LH or MX224LH



# **CML Product Data**

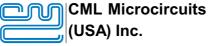
In the process of creating a more global image, the three standard product semiconductor companies of CML Microsystems Plc (*Consumer Microcircuits Limited (UK), MX-COM, Inc (USA) and CML Microcircuits (Singapore) Pte Ltd)* have undergone name changes and, whilst maintaining their separate new names (*CML Microcircuits (UK) Ltd, CML Microcircuits (USA) Inc and CML Microcircuits (Singapore) Pte Ltd*), now operate under the single title CML Microcircuits.

These companies are all 100% owned operating companies of the CML Microsystems Plc Group and these changes are purely changes of name and do not change any underlying legal entities and hence will have no effect on any agreements or contacts currently in force.

#### **CML Microcircuits Product Prefix Codes**

Until the latter part of 1996, the differentiator between products manufactured and sold from MXCOM, Inc. and Consumer Microcircuits Limited were denoted by the prefixes MX and FX respectively. These products use the same silicon etc. and today still carry the same prefixes. In the latter part of 1996, both companies adopted the common prefix: CMX.

This notification is relevant product information to which it is attached.


#### CML Microcircuits (USA) [formerly MX-COM, Inc.] Product Textual Marking

On CML Microcircuits (USA) products, the **'MX-COM'** textual logo is being replaced by a **'CML'** textual logo.

Company contact information is as below:



Oval Park, Langford, Maldon, Essex, CM9 6WG, England Tel: +44 (0)1621 875500 Fax: +44 (0)1621 875600 uk.sales@cmlmicro.com www.cmlmicro.com



COMMUNICATION SEMICONDUCTORS

4800 Bethania Station Road, Winston-Salem, NC 27105, USA Tel: +1 336 744 5050, 0800 638 5577 Fax: +1 336 744 5054 us.sales@cmlmicro.com www.cmlmicro.com



No 2 Kallang Pudding Road, 09-05/ 06 Mactech Industrial Building, Singapore 349307 Tel: +65 7450426 Fax: +65 7452917 sg.sales@cmlmicro.com www.cmlmicro.com